class MedusaProposer:
"""
Medusa proposer class for generating token sequences
"""
def __init__(
self,
vllm_config: VllmConfig,
device: torch.device,
):
# Save config parameters
self.vllm_config = vllm_config
self.device = device
self.max_num_tokens = vllm_config.scheduler_config.max_num_batched_tokens
self.hidden_size = (
vllm_config.speculative_config.draft_model_config.get_hidden_size()
)
self.dtype = vllm_config.model_config.dtype
def propose(
self,
target_hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
slot_mappings: dict[str, torch.Tensor]
| list[dict[str, torch.Tensor]]
| None = None, # unused
) -> torch.Tensor:
# Generate blocks and compute logits
blocks = self.model(target_hidden_states)
logits = self.model.compute_logits(blocks)
# Compute argmax for each Medusa head and stack into a single tensor
# Shape: [batch_size, num_heads]
draft_tokens = torch.stack([logit.argmax(dim=-1) for logit in logits], dim=1)
return draft_tokens
def load_model(self, target_model: nn.Module) -> None:
from vllm.compilation.backends import set_model_tag
with set_model_tag("medusa_head"):
self.model = get_model(
vllm_config=self.vllm_config,
model_config=self.vllm_config.speculative_config.draft_model_config,
)
assert not (
is_mixture_of_experts(self.model)
and self.vllm_config.parallel_config.enable_eplb
), "EPLB for Medusa is not supported"
@torch.inference_mode()
def dummy_run(self, num_tokens: int) -> None:
hidden_states = torch.zeros(
(self.max_num_tokens, self.hidden_size),
dtype=self.dtype,
device=self.device,
)
with set_forward_context(None, self.vllm_config, num_tokens=num_tokens):
self.model(hidden_states)