vllm.model_executor.layers.fused_moe.fused_moe_method_base ¶
FusedMoEMethodBase ¶
Bases: QuantizeMethodBase
Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | |
__init__ ¶
__init__(moe: FusedMoEConfig)
apply ¶
apply(
layer: FusedMoE,
x: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
) -> Tensor | tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
apply_monolithic ¶
apply_monolithic(
layer: FusedMoE, x: Tensor, router_logits: Tensor
) -> Tensor | tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
create_weights abstractmethod ¶
create_weights(
layer: Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: dtype,
**extra_weight_attrs,
)
Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
get_fused_moe_quant_config abstractmethod ¶
get_fused_moe_quant_config(
layer: Module,
) -> FusedMoEQuantConfig | None
maybe_make_prepare_finalize ¶
maybe_make_prepare_finalize(
routing_tables: tuple[Tensor, Tensor, Tensor]
| None = None,
) -> FusedMoEPrepareAndFinalize | None
Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
prepare_dp_allgather_tensor ¶
prepare_dp_allgather_tensor(
layer: FusedMoE,
hidden_states: Tensor,
router_logits: Tensor,
) -> tuple[Tensor, list[Tensor]]
Hook to prepare tensors and extra tensors for DP allgather + EP dispatch.
Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
select_gemm_impl ¶
select_gemm_impl(
prepare_finalize: FusedMoEPrepareAndFinalize,
layer: Module,
) -> FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
uses_weight_scale_2_pattern ¶
uses_weight_scale_2_pattern() -> bool
Returns True if this quantization method uses 'weight_scale_2' pattern for per-tensor weight scales (e.g., FP4 variants), False otherwise.
This method should be overridden by subclasses that use the 'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.