vllm.model_executor.layers.fused_moe.fallback ¶
FallbackExperts ¶
Bases: FusedMoEPermuteExpertsUnpermute, ABC
Base class for runtime dispatching of expert implementations.
Source code in vllm/model_executor/layers/fused_moe/fallback.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | |
__init__ ¶
__init__(
experts: FusedMoEPermuteExpertsUnpermute,
fallback_experts: FusedMoEPermuteExpertsUnpermute,
)
Source code in vllm/model_executor/layers/fused_moe/fallback.py
_select_experts_impl abstractmethod ¶
_select_experts_impl(
hidden_states: Tensor, w1: Tensor, w2: Tensor
) -> FusedMoEPermuteExpertsUnpermute
_supports_activation classmethod ¶
_supports_parallel_config classmethod ¶
_supports_parallel_config(
moe_parallel_config: FusedMoEParallelConfig,
) -> bool
Source code in vllm/model_executor/layers/fused_moe/fallback.py
_supports_quant_scheme classmethod ¶
Source code in vllm/model_executor/layers/fused_moe/fallback.py
activation_format classmethod ¶
activation_format() -> FusedMoEActivationFormat
Source code in vllm/model_executor/layers/fused_moe/fallback.py
apply ¶
apply(
output: Tensor,
hidden_states: Tensor,
w1: Tensor,
w2: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
activation: str,
global_num_experts: int,
expert_map: Tensor | None,
a1q_scale: Tensor | None,
a2_scale: Tensor | None,
workspace13: Tensor,
workspace2: Tensor,
expert_tokens_meta: ExpertTokensMetadata | None,
apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/fallback.py
finalize_weight_and_reduce_impl ¶
finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/fallback.py
get_clses staticmethod ¶
get_clses() -> tuple[
type[FusedMoEPermuteExpertsUnpermute],
type[FusedMoEPermuteExpertsUnpermute],
]
Get the cls for the experts and fallback experts.
Subclasses should implement this method, so that we have a consistent way to call the supports* class methods below.
Source code in vllm/model_executor/layers/fused_moe/fallback.py
supports_chunking ¶
supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/fallback.py
supports_expert_map ¶
supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/fallback.py
workspace_shapes abstractmethod ¶
workspace_shapes(
M: int,
N: int,
K: int,
topk: int,
global_num_experts: int,
local_num_experts: int,
expert_tokens_meta: ExpertTokensMetadata | None,
activation: str,
) -> tuple[
tuple[int, ...], tuple[int, ...], tuple[int, ...]
]